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The feasibility of an experiment which is being set up in our plasma laboratory to study the effect

of a wakefield formed by an ultra-short (�10�9 s) high-power (�1 GW) microwave (10 GHz) pulse

propagating in a cylindrical waveguide filled with an under-dense [(2–5)� 1010 cm�3] plasma is

modeled theoretically and simulated by a particle in cell code. It is shown that the radial pondero-

motive force plays a circular key role in the wakefield formation by the TM mode waveguide. The

model and the simulations show that powerful microwave pulses produce a wakefield at lower

plasma density and electric field gradients but larger space and time scales compared to the laser

produced wakefield in plasmas, thus providing a more accessible platform for the experimental

study. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4989731]

I. INTRODUCTION

The excitation of space-charge oscillations in under-dense

plasmas by an ultra-short pulse of intense laser electromagnetic

radiation resulting in a wakefield formation is perhaps the most

noticeable example of a wave-plasma interaction. This physical

phenomenon, being interesting by itself, holds the greatest

promise for charged particles acceleration to the GeV range of

energy within a distance of�10�3 m.1–4 The maximal acceler-

ating electric field of plasma oscillations excited by the electro-

magnetic pulse grows with the plasma density. In order to

exceed significantly the accelerating fields realized in tradi-

tional accelerators (�100 MV/m), the plasma density should

be, on the one hand, large enough. On the other hand, the

frequency of the electromagnetic pulse should exceed the

plasma electron frequency. The laser pulses are best suited for

wakefield acceleration: modern lasers produce sufficiently

powerful (�1019 W/cm2) and short (�10�13 s) pulses which

can excite wakefields of large amplitude (�1011 V/m) in dense

(�1019 cm�3) plasmas. Thus, the laser pulse driving wakefields

are characterized by small temporal and spatial scales

(�10�2 cm) that make experiments investigating the underly-

ing physical processes challenging.

Wakefield excitation can be studied by applying an ultra-

short high power microwave (HPM) pulse interacting with

the plasma.5 Similar to the case of the ponderomotive field

excitation in plasmas by powerful laser pulses, the density

modulation and wakefields will be generated most efficiently

when the microwave pulse duration tp will be approximately

equal to the half of the plasma oscillation period, i.e., xpetp �
p; where xpe is the plasma electron frequency. For instance,

for the microwave pulse duration of �0.35 ns, the optimal

plasma electron density is �2.5� 1010 cm�3. It is clear that in

this case, the expected wakefield’s amplitude will be several

orders lower than those excited by powerful and ultrashort

laser pulses. However, wakefield excitation by hundreds of

MW power microwave pulse at �10 GHz frequency and a

duration of �1 ns in a plasma with the density in the range of

1010–1011 cm�3 is characterized by the significantly larger

temporal and spatial scales. This allows the application of dif-

ferent time- and space-resolved diagnostics of the plasma

parameters, which determine formation and evolution of the

wakefield, and the comparison between experimental and

simulations results. Fast progress in generation of short dura-

tion microwave pulses with the power of several GW (Ref. 6)

makes reasonable to use such pulses for detailed investigation

of wakefield excitation and evolution.

Recently, there is interest in the excitation of wakefields

by electromagnetic pulses with more complex than linear or

circular polarization and transversal profiles different from

Gaussian. In particular, wakefields excited by a pulse of the

TE mode of a rectangular waveguide filled with plasmas

were considered in Refs. 7–12. For instance, one can expect

a wakefield of �10 kV/cm in the case of the TE mode micro-

wave pulse with a power density of 0.25 MW/cm2 and a fre-

quency of �5 GHz propagating in a rectangular waveguide

filled by plasmas with a density of �3� 109 cm�3.7 The field

structure of the driving electromagnetic pulse in a waveguide

differs strongly from the one in the unbounded plasma.

Moreover, the electromagnetic energy is concentrated not

only in a single focal region, as in the case of the unbounded

plasma, but in a small transversal cross-sectional area along

the entire waveguide. These characteristics can also simplify

the experimental diagnostics of the plasma parameters.

In this paper, the wakefield excitation by an HPM pulse

of a TM mode propagating in a cylindrical waveguide filled

with plasmas is studied analytically and numerically. It is

shown that the radial component of the ponderomotive force,

caused by the radial structure of TM mode, exceeds consid-

erably the longitudinal component, relating to the temporal

evolution of the pulse envelope. Waveguides with walls par-

tially transparent to the plasma particles flux, as it is planned

in our experimental setup, are considered along with wave-

guides with non-transparent conducting walls. Other experi-

mental variations are also numerically modeled.

II. BASIC EQUATIONS

The backward wave oscillator (BWO) operating in the

super-radiant regime13,14 is one of the best suited devices for

the generation of short HPM pulses. The slow-wave structure

of the BWO consists of a cylindrical waveguide with
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periodically corrugated conducting walls. In order to study

the interaction of the electromagnetic pulse with under-dense

plasmas, it seems reasonable to connect the output end of the

BWO with a smooth cylindrical waveguide of the same

diameter filled with a preliminarily formed under-dense

plasma. This design allows one to eliminate interface insula-

tors and transition elements (for instance, mode converter)

and reduce the power losses caused by these elements. The

electromagnetic mode propagating through the plasma is the

same as the BWO’s operating mode, namely, TM01 mode,

whose electric and magnetic fields are Ez , Er ; and Hu

Ez ¼ �
k?
kz

E0 z; tð ÞJ0 k?rð Þcos xt� kzzð Þ; (1a)

Er ¼ E0ðz; tÞJ1ðk?rÞ sin ðxt� kzzÞ; (1b)

H/ ¼
k0

kz
E0 z; tð ÞJ1 k?rð Þsin xt� kzzð Þ: (1c)

Here, k0 ¼ x=c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

z þ k2
?

p
, k? ¼ c0;1=R, c0;1 � 2:4 is the

first zero of the Bessel function J0, and R is the waveguide

radius. Equation (1) describes a wave packet (pulse), when

the amplitude E0 is a slowly varying function of the argu-

ment t� z=vg, where vg ¼ dx=dkz ¼ ckz=k0 is the wave

group velocity. Electron motion in the fields of the TM01

wave is described by the following equations:

dvz

dt
¼ e

m
Ez þ

e

mc
vrH/; (2a)

dvr

dt
¼ e

m
Er �

e

mc
vzH/; (2b)

dz

dt
¼ vz; (2c)

dr

dt
¼ vr: (2d)

It is assumed in Eq. (2) that the amplitude of the electric field

is small enough, so that the dimensionless amplitude E ¼
eE0

mcx� 1; which corresponds to the non-relativistic electron

motion.

Let us introduce dimensionless variables s ¼ xt,
n ¼ kzz, q ¼ k?r, bn 	 dn=ds ¼ kzvz=k0c, and bq 	 dq=ds
¼ k?vr=k0c.

Now, Eq. (2) reads as

dbn

ds
¼ �sin wE hð ÞJ0 qð Þcos s� nð Þ

þ 1

sin w
E hð ÞJ1 qð Þsin s� nð Þbq; (3a)

dbq

ds
¼ sin wE hð ÞJ1 qð Þsin s� nð Þ

� sin w
cos2w

E hð ÞJ1 qð Þsin s� nð Þbn; (3b)

dn
ds
¼ bn; (3c)

dq
ds
¼ bq: (3d)

Here, sin w ¼ k?=k0, cos w ¼ kz=k0 ¼ vg=c, and h ¼ s� n=
cos2w. We should bear in mind that the wave amplitude EðhÞ
is a slowly varying function, i.e., E�1dE=dh / s�1

p � 1,

where sp ¼ xtp 
 1 and tp is the pulse duration.

III. FAST AND SLOW ELECTRON MOTION

The right-hand sides of Eq. (3) contain two time scales:

fast oscillating functions cos ðs� nÞ and sin ðs� nÞ and the

slowly varying function EðhÞ. Correspondingly, the solutions

for the axial nðsÞ and the radial qðsÞ motion of electrons are

two-scale functions: n ¼ �n þ ~n and q ¼ �q þ ~q, where the

mark ð:Þ means the average over the fast oscillations and the

mark ~:Þð indicates the oscillating part. The oscillating parts

are proportional to E, while the slow-varying parts are pro-

portional to E2 � E. Below, we will neglect the terms which

contain ðdE=dhÞ2, Ed2E=dh2, and higher derivatives of E.

The oscillating parts of the solution of Eq. (3) are

~bn ¼�sinwJ0 �qð Þ E �hð Þsin s� �n
� �

þ dE
d�h

cos s� �n
� �� �

; (4a)

~n ¼ sin wJ0 �qð Þ E �hð Þcos s� �n
� �

� 2
dE
d�h

sin s� �n
� �� �

; (4b)

~bq ¼�sinwJ1 �qð Þ E �hð Þcos s� �n
� �

� dE
d�h

sin s� �n
� �� �

; (4c)

~q ¼�sinwJ1 �qð Þ E �hð Þsin s� �n
� �

þ 2
dE
d�h

cos s� �n
� �� �

: (4d)

The slowly varying function �bn is defined by the equation

d�bn

ds
¼ �sin whE hð ÞJ0 qð Þcos s� nð Þi

þ 1

sin w
E �hð ÞJ1 �qð Þh sin s� �n

� �
~bqi; (5)

where h…i means averaging over the fast oscillations. Using

the expansions

E hð Þ � E �hð Þ �
~n

cos2w
dE �hð Þ

d�h
;

J0 qð Þ � J0 �qð Þ � J1 �qð Þ~q;
cos s� nð Þ � cos s� �n

� �
þ ~n sin s� �n

� �
:

One can present Eq. (5) for the axial electron motion as follows:

d�bn

ds
¼ 1

2
sin2w 1þ 1

2 cos2w

� �
J2

0 �qð Þ
�

þ 1

2
� sin2w

� �
J2

1 �qð Þ
�

dE2 �hð Þ
d�h

: (6a)

Similarly, one can obtain an equation for the radial motion

d�bq

ds
¼ 1

2
sin2wE2 �hð Þ 1

cos2w
� 2

� �
J0 �qð Þ þ

1

q
J1 �qð Þ

� �
J1 �qð Þ:

(6b)

Equations (6a) and (6b), supplemented with equations
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d�n
ds
¼ �bn (6c)

and

d�q
ds
¼ �bq; (6d)

form the complete set, which describe the motion of a single

electron.

IV. SPACE CHARGE FIELD

The right-hand sides of Eqs. (6a) and (6b) represent the

forces experienced by the electron in the longitudinal and

radial directions, respectively. The longitudinal force is pro-

portional to dE2=dh / s�1
p E2. In contrast, the radial force

does not contain a derivative of E2:
When the waveguide radius is of the same order of mag-

nitude as the wavelength, i.e., sin w � 1, the longitudinal

force exceeds the radial one near the axis only, where

q � s�1
p � 1. Moreover, the longitudinal force as a function

of time changes its sign, while the radial force remains always

positive. It means that the electromagnetic pulse shifts almost

all electrons in the waveguide cross-section mainly in the

radial direction. Note that in a super-dimensional waveguide

(sin w! 0), the longitudinal force dominates.

Until now, the motion of a single electron was consid-

ered. Let the waveguide be filled by a low-density plasma,

xP � x, where xP is the electron Langmuir frequency. The

microwave pulse pushes out plasma electrons in the radial

direction away from the axis. The space charge of the plasma

ions (considered as motionless) produces a radial electric

field which attracts the electrons to the axis. The axial elec-

tric field of the space charge can be neglected due to the rea-

sons explained above. Moreover, the characteristic spatial

scale of the longitudinal modulation of the electron density

is of the order of the pulse length vgtp. Because this length is

much larger than the waveguide radius, the radial electric

field caused by this longitudinal modulation is much stronger

than the axial one. Therefore, only the radial component

E
ðplÞ
r of the space charge field will be taken into account.

Let us assume that the radial trajectories of electrons do

not intersect each other. This means that before the pulse pas-

sage, the total charge of electrons, Qe, contained initially in a

given cross-section in the circle of radius r0 remains constant:

QeðtÞ ¼ epr2
0n0 ¼ epr2ðtÞn0, where n0 is the unperturbed

plasma density. The total charge of ions contained in the circle

of radius rðtÞ is Qi ¼ �epn0r2ðtÞ. The total charge contained

in the circle of radius rðtÞ is QeðtÞ � QiðtÞ ¼ epn0½r2
0 � r2ðtÞ�.

Thus,

2prðtÞEðplÞ
r ¼ 4p2en0 r2

0 � r2ðtÞ
	 


: (7)

Here, rðtÞ is the trajectory of the electron whose initial radial

position is r0. The expression for the dimensionless space

charge field EðplÞ
r ¼ eE

ðplÞ
r =mcx follows from Eq. (7):

E plð Þ
r sð Þ ¼ �

2

2

q2
0

q sð Þ
� q sð Þ

" #
; (8)

where � ¼ xp=x� 1. Equation (6b), in view of Eq. (8), can

now be written as

d�bq

ds
¼ 1

2
sin2wE2 �hð Þ 1

cos2w
� 2

� �
J0 �qð Þ þ

1

q
J1 �qð Þ

� �
J1 �qð Þ

þ �2

2 sin w
q2

0

q sð Þ � q sð Þ
" #

: (9)

V. WAKEFIELD, NUMERICAL SOLUTION

As an example, the temporal evolution of the electron den-

sity in a waveguide cross-section, obtained by the numerical

solution of Eqs. (6a), (6c), and (6d) and Eq. (9), is presented in

Fig. 1. The parameters of the numerical simulation are as fol-

lows: the waveguide radius is 1.4 cm, the pulse carrier fre-

quency f ¼ 10 GHz, the plasma density n0 ¼ 3� 1010 cm�3,

it is assumed that the pulse profile is Gaussian, E2
0ðt� z=vgÞ

/ exp ½�ðt� z=vgÞ2=t2
p�, with tp ¼ 0:35 ns, and the pulse

power 400 MW. It is assumed that the electrons which reach

the waveguide wall are absorbed.

The wakefield formation is easily seen in Fig. 1 as a

periodic modulation of the electron density after the pulse

has left. The period of the modulation is defined by the

plasma frequency xp. Note that the essential radial variation

of the plasma density occurs in a region dr of the order of a

few mm near the axis, while the axial dimension dz � vgtp of

FIG. 1. Evolution of the normalized electron density neðr; tÞ=n0. Time t ¼ 0

corresponds to the center of the Gaussian pulse, whose temporal profile is

shown as a shaded area.

FIG. 2. The shape of a �0.85 GW maximum instantaneous power, Pmax ¼
0:4 GW average power, 10 GHz frequency, input pulse applied at the

upstream boundary of the waveguide.
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this region is of the order of 10 cm. The smallness of the ratio

dr=dz� 1 confirms the assumption that the space charge

field is directed mainly along the radius.

VI. PARTICLE IN CELL SIMULATIONS OF THE
FORMATION OF A WAKEFIELD IN A PLASMA FILLED
WAVEGUIDE

In this section, we present the results of numerical simu-

lations using the 3D Partcle in Cell (PIC) code Lsp (Large

scale plasma), which implements advanced plasma modeling

algorithms,15,16 for the conditions of the experiments which

is being set up in our laboratory. It was shown5 that when

such a microwave pulse is focused by a dielectric lens in an

under-dense plasma, a localized wakefield develops at the

microwave beam focal waist location with parameters in a

region which is simpler to investigate than in the ultra-short

high power laser and dense plasma experiments. For these

experiments, we are using a super-radiance backward wave

oscillator (SRBWO) which produces a TM01 mode which

first converted to a TE11 mode and then focused to a desired

location in the plasma by dielectric lenses.5

In the numerical experiments considered here, the high-

power microwave TM01 mode microwave pulses (f � 10

GHz, power 0.5–1 GW, pulse duration tp � 0:35 ns at Full

Width Half Maximum) generated by the SRBWO are used

directly to interact with a preliminarily formed plasma of den-

sity (2–5)� 1010 cm�3. The microwave radiation produced in

the corrugated vacuum cylindrical waveguide of the SRBWO

is connected at its downstream end to the plasma-filled wave-

guide of the same radius of 1.4 cm. In the planned

experiments, the plasma will be produced by four flashboard

plasma sources17 placed along the outer walls of a 6.25 cm

radius tube, whereas the waveguide consists of 24, 1 mm

diameter longitudinal wires uniformly distributed around a

transverse 1.45 cm radius circle. This allows sufficient electro-

magnetic continuity of the waveguide walls. The latter was

checked by simulation showing almost 100% efficient micro-

wave pulse propagation inside this cylindrical wire array

waveguide. Also, this design enables the plasma to fill the

waveguide and the gaps between the wires allow a line of

sight for diagnostic observation of the plasma within the

waveguide. In contrast to a solid wall waveguide, the plasma

electrons can escape through the gaps between the wires.

The simulation model considers an initially formed col-

lisionless plasma of predefined electron density where at

each electron position an immobile positive ion is located.

We first simulate an 80 cm long and 1.4 cm radius solid con-

ducting waveguide where a TM01 mode source pulse (see

Fig. 2) is applied at its upstream boundary to compare to the

analytic predictions described in Secs. IV and V. This pulse

propagates along the waveguide and perturbs the stationary

electrons in a manner seen in Fig. 3. One can see that when

Pmax ¼ 0:4 GW and ne¼ 3� 1010 cm�3, the plasma electrons

are plowed away by the ponderomotive force from the propa-

gation axis, at first almost completely [Figs. 3(a) and 3(b)]

followed by a density wake. This confirms analytical conclu-

sion presented in Secs. III and IV: the radial ponderomotive

force is large as compared with longitudinal one and plays

the key role in the wakefield formation.

One can see the similarity between Figs. 3(a) and 1,

both drawn in the same color scheme and limits of the

FIG. 3. (a) Relative electron density

contours in the [r, z] plane at t¼ 3.5 ns.

(b) Electron positions at the same time

and in the same plane (including all elec-

trons in a 1 mm thick slice for Pmax ¼
0:4 GW and ne¼ 3� 1010 cm�3.

FIG. 4. Contours of Er (a) and Ez (b) in

the [r, z] plane at t¼ 3.5 ns for the

same conditions as those in Fig. 3.
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relative density contours. Note in Fig. 3 that dr is of the order

of a few mm whereas dz of the order of 10 cm reaffirming

the assumptions of the model in Sec. IV, i.e., that the radial

electric field of the space charge longitudinal modulation is

considerably stronger than the axial one.

In Fig. 4, the r and z components of the electric field are

drawn at the same time as that in Fig. 3. The contours are

drawn in the tail of the wake because in the main further

downstream it is difficult to distinguish between the fields of

the MW pulse and those of the space charge. Both compo-

nents are of the same order and relatively weak.

The contour plot in Fig. 4 (right) is split at z¼ 30 cm

into two regions with different contour scales. For z> 30 cm,

the propagation of the MW pulse is seen, whereas for

z< 30 cm, the much weaker Ex component of the wakefield

appears. The separation of the wakefield from the MW pulse

can be deduced from Fig. 4(b).

For large input microwave power (Pmax � 0:9 GW), the

ponderomotive force at the front of the wave propagating in

the waveguide plows almost all electrons to the walls leav-

ing a �100% positive ion plasma in the cavity (see Fig. 5).

A large volume of positively charged under-dense and low-

temperature non-neutral plasma forms this way, which

could become an experimental platform for other types of

experiments.

The results of simulations of a microwave pulse interact-

ing with the under-dense plasma filling an �80 cm long and

1.4 cm radius waveguide consisting of 24 wires (24 W)

placed in a conducting tube of 6.25 cm radius representing

the experimental setup as explained above are presented next

in Fig. 6. This is the experimental equivalent of the solid

wall waveguide seen in Fig. 3(a).

One can see that as the microwave pulse propagates, the

density wake is not limited within the waveguide [Fig. 3(a)]

but expands through the gaps between the wires (Fig. 6).

This causes the wake inside the waveguide to decay and

more difficult for experimental detection. Using the data pre-

sented in Fig. 6, one can estimate the energy We of electrons

escaping the wire array waveguide as We� 0.9 keV.

One can constrain the plasma electrons within the 24 W

waveguide by applying an external axial magnetic field, Bz.
18

In Fig. 7(a), one can see that a relatively small Bz ¼ 500 G is

sufficient to contain the electrons within the waveguide and

sustain a wake. The wake is completely suppressed for a

stronger magnetic field due to electron magnetization.

Finally, in Fig. 7(b), one can see the plasma density

modulations when in addition to applying a uniform axial

magnetic field of 500 G, the 24 W waveguide was closed

with a downstream conducting endplate. The latter results in

reflected electromagnetic waves, leading to the appearance

of a delayed second strong plasma density modulation. The

wake is though weakened because of interference between

the forward and backward wakes.

VII. CONCLUSIONS

Analytical modeling and PIC simulations showed the

feasibility of excitation of a large scale spatial wakefield by

a short high-power microwave pulse propagating in a cylin-

drical waveguide filled with under-dense plasma. Depending

on the parameters of the plasma and microwave power,

FIG. 5. Electron positions in the [r,z] plane including all electrons within a

1 mm thick slice, at t¼ 3.5 ns for Pmax ¼ 1:25 GW and ne¼ 3� 1010 cm�3.

FIG. 6. The same as Fig. 3(a): relative electron density contours in the [r, z]
plane at y¼ 0 and t¼ 3.5 ns but for a 1.4 cm radius 24 W waveguide placed in a

6.25 mm radius solid wall waveguide. Pmax ¼ 0:4 GW and ne¼ 3� 1010 cm�3.

FIG. 7. The same as Fig. 5 but (a) with

an applied external Bz¼ 500 G

(t¼ 3.5 ns) and (b) with a conducting

endplate at z¼ 80 cm (t¼ 8.4 ns).
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almost 100% density modulation can be obtained. It is shown

that the TM mode of circular waveguide produces mainly

radial ponderomotive force which exceeds considerably the

longitudinal one.
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