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Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were

investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this

type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-

resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and

its velocity. It was found that the shock wave preserves its circular front shape in the range of radii

50 lm < r < 5 mm: At r � 15 lm, azimuthal irregularities of the SW front were obtained indicating

the appearance of azimuthal instability. A surprising finding is that the shock wave propagates with a

constant velocity of vsw ¼ 1:2M, where M is the Mach number. The dynamics of the leading part of

the shock wave, based on the oblique shock wave theory, is presented, explaining the constant

velocity of the shock wave. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4804342]

I. INTRODUCTION

The cumulation of energy in a small and confined space,

where the energy density (and other thermodynamic parame-

ters) rises and reaches high values near the axis or point of

implosion, is a subject of a great interest in science. There

are several well-known examples of cumulative processes,

for instance, converging shock waves (SW) in different

media, the collapse of an air-filled bubble in water, and elec-

tromagnetic SW.1 It is well known that the amplitude of a

converging SW with a spherically or cylindrically symmetric

front is amplified by the A2 � S�1 law, where A is the ampli-

tude and S is the area of the surface of the SW. The above

statement is merely a result of the conservation of energy: as

the SW converges, the energy that it carries along is being

confined into a smaller volume and distributed over a

decreasing SW front area. For example,2 in a weak SW prop-

agating in an ideal gas, the temperature rises as TðrÞ � r�1,

while in a cylindrical case TðrÞ � r�0:5: In the experimental

perspective, the convergence of the SW results in the finite

cumulation of energy, i.e., in the growth of the pressure

behind the SW front in the vicinity of its point of implosion.

In general, the parameters of the converging SW depend

on the properties of the source that generated it. However, at

a certain point of convergence, the SW “forgets” how it was

created3 and starts to behave self-similarly, i.e., the process

of cumulation can be described by a self-similar solution of

the hydrodynamic equations.4 Such self-similar solutions

were first found by Guderley,5 and later independently by

Landau6 and Stanykovich,7 when they considered a converg-

ing cylindrical or spherical SW propagating in an ideal gas.

For this problem, self-similarity solutions were found for dif-

ferent gas adiabatic coefficients c ¼ 3 (Stanyukovich and

Landau6) and c ¼ 1:4 (Guderley5); the resulting temperature

dependencies on radius were T � r�1:14 and T � r�0:79,

respectively, and the shock wave’s front pressure was

approaching infinity for both solutions, while the density

remained finite at the point of implosion. Let us note that at

the present there is no complete answer about the range of

applicability and, respectively, the correctness of solutions

for the limit of cumulation of strong shock waves (SSWs).

For instance, in a review,2 different models of instabilities

were considered, including models showing that, in the case

of water, the converging SW is stable even in linear approxi-

mation, and small perturbations do not limit the cumulation.

Therefore, for each experiment, this limit should be deter-

mined independently.

The convergence of toroidal SWs in air at different pres-

sures has been investigated by Berezhetskaya et al.8 A signifi-

cant increase in the pressure near the point of convergence

was found, since air is not a dense material, its compressibil-

ity is high, and its equation-of-state (EOS) fits well with that

of an ideal gas. Water, in contrast to air, is very difficult to

compress, and similarly to air it allows optical observation.

Therefore, it is very interesting to perform SW implosion

experiments in water and investigate the behavior of the to-

roidal SW front near the axis or point of implosion.

Underwater electrical wire explosion is a convenient method

of generating SW in water. The water environment prevents

surface flashover and fast wire expansion, which allows high

energy density deposition to be achieved.9,10 It was shown

that up to 90% of the stored energy can be deposited into the

exploding wire, which generates a uniform cylindrical SW,

with 20 6 4% of the energy delivered to the exploding wire

being transferred to the generated water flow.

In this paper, we describe the results of experiments on

the generation of toroidal SW using underwater electrical

explosion of ring-shaped wire. It was found that the toroidal

SW keeps its azimuthal symmetry during the main part of its

convergence and that the convergence of the SW does not

lead to an increase in the pressure at the SW front.

II. EXPERIMENTAL SETUP

A high-current generator based on a 4-stage Marx gener-

ator and water forming line10,11 with output current ampli-

tude up to 50 kA and rise time of 70 ns was used in these

experiments. The waveforms of the current I(t) at the output
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of the exploding wire and the voltage umðtÞ at the

wire-cathode holder were measured using a current viewing

resistor and capacitive voltage divider, respectively, and

registered using a Tektronix TDS-784 A oscilloscope (see

Fig. 1(a)). The energy deposited into the ring shape wires

W ¼
Ð t

0
IðtÞuðtÞdt was �100 J within the first 150 ns of the

current pulse; a power of 1.7 GW was obtained (see Fig.

1(b)). Here, uðtÞ ¼ umðtÞ � LdIðtÞ=dt is the resistive volt-

age, where L is the inductance of the wire cathode holder,

which was determined in experiments with a short-circuit of

the cathode-anode gap. Several shots with different wire

diameters were made in order to find the diameter with the

optimal energy deposition.

The loads in the experiments were two half-ring-shaped

copper wires with a diameter of 100lm (see Fig. 2). The

wires were stretched around a plastic cylinder placed

between two cone-shaped stainless steel holders, through a

1 mm hole at the axis of each electrode. Each wire’s end was

soldered to the opposite side of the cone-shaped electrode,

and then the plastic cylinder was removed, thus leaving a

ring-shaped wire configuration. The diameter of this “ring”

configuration was 20 mm.

The BNC 575 pulse delay generator was used to syn-

chronize the operation of the high-current generator with the

optical setup, which consisted of a pulsed laser, CCD cam-

eras, and a fast framing intensified 4QuikE camera. The

inner area of the exploded ring-shaped wire was back-lighted

by either a 532-nm, 100 mW CW laser, and the captured

images were recorded with the 4QuikE camera with an expo-

sure time of �5 ns, or by 532 nm, 5 ns Ekspla NL301G laser

with images recorded by Canon EOS 450 and Nikon D60

CCD cameras with resolutions of 4272� 2848 and

3872� 2592 pixels, respectively. The 4QuikE camera oper-

ated in multi-frame mode with 600 ns time delays between

the frames. A typical shadow image of three exposures of

the propagating SW front, obtained at different time delays,

is shown in Fig. 3. The CCD cameras were configured to op-

erate either for shadowgraph or in a Schlieren setup. In some

experiments, both configurations were used, and the image

was split using a beam splitter (see optical schemes shown in

Fig. 4).

In order to capture the dynamics of the annular under-

water electrical wire explosion (UEWE), different magnifi-

cations of the optical setup were used, namely, 1:1 and 1:5,

depending on the desired time delay and position of the con-

verging SW. The 1:5 magnification was used to obtain the

SW front in the vicinity r � 1 mm of the implosion. In this

case, the space resolution was �20 lm, limited by the pixel

dimension, which was 6 lm; around 3 pixels were needed to

determine the front of the SW.

A crucial issue in these experiments was the alignment

of the ring with the optical axis of the back-lighting laser, in

order to avoid skewing of the SW front’s shape, especially in

the vicinity of the implosion. Even a slight misalignment

caused the SSW image to become skewed, resulting in an

artificially elliptic image (see Fig. 5) instead of a circular

image of the radially converging shock wave. Therefore, an

FIG. 1. (a) Waveforms of the discharge currents and resistive voltages;

(b) power and deposited energy into the ring-shape wires.

FIG. 2. Image of ring holder with a ring-shaped wire. The ring’s diameter is

20 mm; it is made of Cu wire with a diameter of 100 lm:

FIG. 3. Overlaid multi-frame image from the 4QuikE fast framing camera

of the TOF experiments. Left—original image, right—same image with SW

fronts marked for brevity, with the distances from the implosion axis.

FIG. 4. Optical setup for simultaneous shadow and Schlieren imaging.

1—CW 532 nm dc laser; 2,3,4—1 in. flat mirrors; 5—photodetector;

6—pulsed 532-nm laser; 7—transparent parallel plate; 8—diaphragm;

9—negative lens; 10—ND filter; 11—2 in. flat mirrors; 12—windows in the

experimental chamber; 13—experimental chamber; 14—load (straight wire

or wire-ring); 15—objective lenses; 16—narrowband filter (full width at half

height is 10 nm); 17—beam-splitter; 18—Canon CCD camera; 19—knife;

20—Nikon D60 CCD camera.
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additional backlighting optical scheme was used, which

ensured the correct alignment of the ring-shaped wire plane

with the back-lighting laser beam with an accuracy of �0.2�.

III. RESULTS

The shadow images of the annular SW (perpendicular to

the plane of the ring), obtained by 4QuikE and CCD cam-

eras, were used for the time-of-flight (TOF) analysis and the

analysis of the shape of the converging SW front. The exam-

ples of simultaneously obtained shadow and Schlieren

images of the annular SW at r¼ 200 lm are shown in Fig. 6.

These images, acquired with 1:1 magnification, have four

noticeable regions. The undisturbed water at the center of

the frame, denoted as “1,” is the region where the SW has

not yet arrived.

The dark “circle,” marked by “2,” is the SW front and

the region with compressed water immediately behind it.

The density of water is related to the refraction index by the

Gladstone-Dale relation12 nðrÞ ¼ 1:332þ 0:332ðqðrÞ � q0Þ;
the refraction index is n > 1:33. This variation of density

causes scattering and deflection of the back-lighting rays in

this region of compressed water and prevents the rays from

reaching the CCD sensor. The semi-transparent area, denoted

by “3,” is the region of the water flow behind the SW. Here,

the water density is lower than in region “2,” and the back-

lighting rays pass through relatively undisturbed water. The

area denoted by “4” is the region of the expanding Cu wire,

which is seen best in the Schlieren image (the dark circular

area at the edges of this image). Images obtained by CCD

camera with a magnification of 1:5 showed that the SW front

retains its circular shape for almost the entire convergence

process, i.e., r � 50 lm, with a sharp boundary between the

SW and the undisturbed water. Thus, these experiments

showed that a converging SW keeps its azimuthal symmetry

up to compression factor of 100. At the smaller radii, the

sharp boundary of the SW is clearly seen down to a radius of

r � 25 lm; however, the form of the SW becomes elliptical

(see Fig. 7(a)). The difference in the large and small radii of

the elliptical structure of the SW front at these radii reaches

30 lm. Here, let us note that an inaccuracy in the alignment

of the wire ring plane perpendicular to the laser beam of

�0.1� could lead to the elliptical form of the front of the SW

that was obtained at those radii. Finally, in Fig. 7(b), one can

see the shadow image of the SW at the smallest radius of

�15 lm obtained in these experiments. This image shows

azimuthal irregularities, which strongly indicate the appear-

ance of an azimuthal instability of the SW in the vicinity of

the implosion.

The TOF data of the converging SW propagation are

shown in Fig. 8. One can see the linear dependence of the

SW front radius on time for 50 lm � r � 5000 lm. The

deduced velocity of the SW convergence is VC ¼ 1:2M; with

an 2r standard deviation of <1:5% and an adjusted R2 of

0.995, where M is the Mach number. This is rather an unex-

pected result, since in the case of gas, the convergence veloc-

ity of the SW grows as the radius becomes smaller.8,13

FIG. 5. A sample image of an annular SW in a misaligned optical configura-

tion, taken by a CCD camera body.

FIG. 6. Schlieren (a) and shadow (b) images of the imploding annular SW

obtained with CCD cameras. The images were taken simultaneously at

t ¼ 5:21 ls, with zoom �1:1. The radius of the undisturbed water is

Rw ¼ 200 lm. 1—undisturbed water area; 2—the shock wave front region

with the highest refraction index; 3—water flow behind the shock wave;

4—expanded plasma channel of the exploded wire material.

FIG. 7. Zoomed (�1:5) shadow images of an imploding annular SW.

(a) Elliptical form with large and small radii of �40 and �25 lm, respec-

tively; (b) non-uniform front of the SW at radius of �17 lm.

FIG. 8. Measurements of the radius of the annular shock wave front as a

function of time. The data are incorporated from both the 4Quik fast framing

camera (squares) and the CCD camera images (circles). The typical error of

the 4Quik camera images is 150 lm, and 5 lm of the CCD images. The

dashed curve is the result of a calculation based on the acoustic

approximation.14
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Finally, in Fig. 9, one can see the “side-view” image of

the annular SW, obtained by the 4QuikE camera. The

expanding plasma channel of the exploded wire is clearly

seen at the center of the image. The semi-transparent annular

SW is also seen, with its converging part at the center, par-

tially blocked by the expanding wire material. The SW’s

outer parts are clearly visible at the top and the bottom of the

image. The inner SW front is also visible (especially the

right one), as a circular dark curve.

IV. DISCUSSION

Let us discuss the peculiar result of these experiments,

i.e., the fact that the converging annular SW propagating in

water is imploding with a constant velocity of �1.2 M. First,

we consider the hydrodynamic parameters of the Toroidal

Shock Wave (TSW). The Mach number in the present

experiment is relatively low, and therefore, one can use the

equation-of-state for water12

PðdÞ � q0c2

c
½dc � 1	; (1)

where d ¼ q=q0 is the dimensionless density and c � 7:15 is

the adiabatic coefficient of water. The constants used for this

expression are q0 ¼ 1 g=cm3 and c � 1:5� 105 cm=s, which

are the density and speed of sound in water under normal

conditions, respectively. For simplicity, let us assume a plane

wave propagating with a velocity of 1.2 M. The correspond-

ing density would be d � 1:1, and, respectively, the pressure

would be P � 3� 108 Pa: If this pressure rose to twice this

value, the value of d would increase to d � 1:3 and the SW

velocity would increase to M � 1:5. Such a rise in the veloc-

ity of the SW would have manifested itself in TOF measure-

ments, and it did not.

An estimation of the distribution of the pressure in the

acoustic approximation (M¼ 1) inside the weak SW was per-

formed following Zel’dovich model.14 In our case, the toroi-

dal SW was described as a superposition of many spherical

waves, whose origins are distributed along the ring’s length.

The obtained evolution of the pressure behind the front of

the SW in the plane of the ring was approximated as

Pf ðrÞ ¼ PRðR=rÞ0:33
, where Pr is the known value of the

pressure at radius R. Using this scaling law and the equation-

of-state of water (Eq. (1)), the trajectory of the SW front was

calculated and can be seen as dashed curve in Fig. 8. One

can see that this trajectory does not coincide with the meas-

ured data points. Let us note that if the exponent in this scal-

ing law will be modified in order to satisfactorily fit the

experimental data, the result would be a mere 0.09, i.e., prac-

tically no cumulation at all. Therefore, a different model for

the interpretation of this data is required.

Another possible case of a converging TSW was consid-

ered by Sokolov16 and Khudyakov.19 In the review by

Sokolov,16 it was shown that if RC 
 rf , the inner part of the

TSW looks like a cylindrically converging SW. Here, Rc is

the radius of the SW in the roz plane, and rf is the radius in

the ring’s plane (see Fig. 10). Such cylindrically converging

SW in water is characterized by an accompanying cumula-

tion,3 which was not observed in the present experiment.

Thus, in order to explain the measured data, one has to sup-

pose that in the case of a TSW convergence in water the con-

dition should be RC � rf .

Now we discuss the profile of the inner part of the TSW:

in the “side-view” image of the underwater ring-shaped wire

explosion (Fig. 9), the inward-looking part of the annular

SW front looks circular. However, it is impossible to observe

the inner-most part of the SW, because it is blocked by the

expanding wire material. This “inward-looking” part of the

TSW propagating toward the center with a constant implo-

sion velocity of �1:2M, which we will call from now on

“the leading part of the annular SW,” is the cross-section

area shown in Figs. 3, 5–7. The leading part of the SW is

occupying a “patch” on the inner part of a torus. Each point

at this patch is characterized by two mutually orthogonal

radii of curvature: a convex one in the rou plane of the ring

and a concave one in the roz plane (see Fig. 10).

FIG. 9. Side-view 1:1 shadow image of an imploding annular SW at time

delay of t ¼ 4 ls with respect to the beginning of the discharge current.

FIG. 10. Out-of-scale schematics of annular SW in water. (a) TSW at some early time. The arrows show the principal directions of the curvatures. (b) TSW

during the “leading edge” development, when the radius of its convex curvature is not equal to its width. On both images—the transformation of a dark surface

element during the TSW convergence.
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Here, let us note that the value of rf was experimentally

measured, as opposed to the other radius RC, which cannot be

measured directly. In simple cylindrical or spherical geome-

try, the curvature K is defined as the reciprocal of the radius.

For more complex surfaces, the average curvature K ¼ ð1=r1Þ
þ ð1=r2Þ is used,15 where r1 and r2 are called the principal

radii of the curvature of the surface. In the case of a torus, the

sign of one radius must be changed since the surface is both

convex and concave, and therefore, the expression for the

average curvature becomes K ¼ ð1=r1Þ � ð1=r2Þ, which in

our case is K ¼ ð1=rf Þ � ð1=RCÞ.
In the case of a self-similar cylindrical implosion of the

SW, the Mach number changes as dM=dr � r�n,17 where n
is the self-similarity parameter. In our case, we can use the

averaged curvature of the torus K instead of the cylindrical

one, and obtain the condition dM=dr ¼ const, which implies

convergence with a constant velocity, exactly as observed.

An intuitive explanation for this phenomenon is as follows.

The energy of an SW is distributed over the surface of its

front. In the cylindrical and spherical cases, a surface ele-

ment becomes smaller as the wave converges, which leads to

an increase in the energy density and, respectively, cumula-

tion is achieved. In the annular SW, the “inward-looking”

surface element constantly changes its shape: at the begin-

ning the element is wide and short (see Fig. 10(a)), whereas

during the convergence it becomes narrow and long (see Fig.

10(b)). In terms of concentration of energy, if the surface

area of this element becomes smaller, the energy density

rises and vice versa. If, however, the ratio RC=rf is kept con-

stant, the surface element indeed changes its shape, but its

area remains constant, and therefore the energy density does

not change during the convergence, and no cumulation is

obtained.

Now, we consider a model of the leading part of

the TSW wave front, propagating toward the center. The

radii of curvature of this TSW front in the roz and rou planes

are RC � rf (see Fig. 11). The TSW front profile is a curved

line in the roz plane, starting at the foremost point rf on the r
coordinate. A tangent plane can be placed at each point

on this curve; therefore, the TSW front can be represented

as a series of oblique SWs, whose inclination relative to the

or axis gradually decreases. In order to analyze the dynamics

of each such oblique SW element, it is convenient to work

in a coordinate system moving with the SW front.6,18 In

these coordinates, the undisturbed water velocity is Usw

along the r axis, and b is the angle between the SW and this

velocity.

The velocity of the water behind the front is U1 (the

“out-flowing” water), and its angle with respect to the axis r
is a. An analysis of an oblique SW (see Ref. 18) shows that

the pressure of the SW is Psw ¼ q0U2
swðsin bÞ2ðd� 1Þ=d, and

the relations between the angles and the hydrodynamic

parameters are

ctg2b ¼ q0U2
sw

Psw

d� 1

d
� 1;

tga ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Psw

q0U2
sw

d� 1

d
� Psw

q0U2
sw

� �s
1� Psw

q0U2
sw

� ��1

:

(2)

In the case of an SW propagating in water, the distribution of

the pressure behind the SW front PðdÞ is given by Eq. (1).

We rewrite Eqs. (2) using the Mach number notation

(M ¼ Usw=c)

ctg2b ¼ cM2 d� 1

dðdc � 1Þ

� �
� 1;

tga ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d� 1

d
cM2

ðdc � 1Þ � 1

s
cM2

dc � 1
� 1

� ��1

:

(3)

Let us note that at the limit b! p=2, the oblique SW is

transformed back into a straight SW propagating with

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðdc � 1Þ=½cðd� 1Þ	

p
. At the leading part of the SW

front, r ¼ rf ¼ Mct. Now let us consider a point at the SW

front with r � rf . In this case, one obtains a slight decrease

in the angle b and a slight decrease in dðrÞ as compared with

dðrf Þ � df due to divergence of the water flow behind the

SW front. We note that tgb ¼ dz=dr, i.e., one can consider

Eq. (3) as the equation for the shape of the leading part of

the SW at small deviations of the angle b from p=2. The

main interest is in the curvature K as the SW propagates to-

ward the center of the ring. By using this definition and by

taking another derivative by r of Eq. (3), one can find the

desired dependence between the curvature K and the dimen-

sionless density. Eq. (3) can be re-written as

tgb ¼ dz

dr
¼ FðdÞ; FðdÞ � cM2 d� 1

dðdc � 1Þ

� �
� 1

� ��0:5

:

(4)

Now, one obtains the differential equation

d2z

dr2
¼ �F3ðdÞ

2

dF2ðdÞ
dd

dd
dr

;

dFðdÞ
dd
� cM2 ðdc � 1Þ � ðd� 1Þcdc

d2ðdc � 1Þ2

 !
dd
dr

: (5)

FIG. 11. Cross-section of the leading part of the TSW in the roz plane. Note

the fanning-out of the water flow as it passes through the TSW front. A sym-

metric fanning-out is obtained in the upper part.
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