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The results of two-dimensional hydrodynamic simulations of the dynamics and stability of

azimuthal non-uniformities in converging shock waves generated by an underwater explosion of a

cylindrical wire array and their effect on the cumulation of energy in the vicinity of the converging

axis are presented. It has been shown that in spite of the fact that such non-uniformities are always

weakly unstable, for a broad range of experimentally relevant regimes these non-uniformities

remain small and do not significantly affect the cumulation of energy. Only the non-uniformities

with wavelengths comparable to the distance from the axis of convergence exhibit substantial

growth that considerably attenuates the energy cumulation. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4827262]

I. INTRODUCTION

The generation of extreme states of matter by converg-

ing shock waves (SWs) has been the subject of intense

study due to their importance for hydrodynamics, space and

plasma physics,1 and their potential application for the

ignition of inertial confinement fusion. Several methods of

generating converging SWs, including laser irradiation of a

target,2 the Z-pinch approach,3 underwater chemical,4 elec-

trical explosions of cylindrical or spherical wire arrays,5 and

high-velocity impact with conical targets initiated by chemi-

cal explosions,6 have been studied in the context of inertial

confinement fusion.

In general, the energy density cumulation due to the

cylindrical (spherical) symmetry depends crucially on the

stability of the converging SW front. Different types of insta-

bilities have been thoroughly studied in SW propagating in

gases and plasmas.7–15 There is a general understanding

that in plasmas the energy accumulated by a cylindrically or

spherically converging SW is significantly diminished by

instabilities in the SW front (see for example Ref. 7). The

unstable growth of converging SW front perturbations result-

ing from Raleigh-Taylor instability hinders the realization

of laser-confinement fusion,16 while the development of

sausage and kink modes due to magneto-hydrodynamic

instabilities has been a major obstacle in the Z-pinch

approach.17 In the case of high-velocity impact with conical

targets,6 the perturbations of the interface between the heavy

target material and light fuel exhibit unstable growth because

of the Richtmyer–Meshkov instability at the initial stages

of impact,18 but this instability decays as the shock wave

proceeds to the axis of symmetry resulting in a rather smooth

interface at that location. In general, in spite of the prolonged

research of converging SW stability, there is no complete

answer about the range of applicability and, respectively,

the correctness of solutions for the limit of cumulations of

cylindrical and spherical SWs.10,11 For instance, in a review

by Sokolov7 of different instabilities of converging SW, one

can find models that show that, in the case of water, the

converging SW is stable even in linear approximation and

small perturbations cannot limit cumulations.

Recent experiments on underwater electrical wire explo-

sion (UEWE) showed that this approach can be used to

generate strong SW efficiently due to the several important

advantages that it has as compared with electrical wire

explosion in vacuum. These advantages are the absence of a

shunting plasma shell, which could intercept a significant

part of the discharge current, relatively high efficiency

(�12%) of the transfer of the deposited energy from the

exploding wires to the converging water flow, and low decay

of the SW during its propagation owing to the small com-

pressibility of water. The effect of overheat instabilities and

strata formation19 for wire explosions in water is also signifi-

cantly smaller than in the case of wire explosions in vacuum

or gas because the wire material does not enter the liquid-

vapor bi-phase in which thermal instabilities gain fast

increment.20,21 Using underwater electrical explosion of

cylindrical Cu wire array, an extreme state of water with

pressure up to 0.4 TPa in the vicinity (�5 lm) of the implo-

sion axis was obtained.22,23 In the case of underwater electri-

cal explosion of a spherical Cu wire array, the parameters of

the “water” in the vicinity (diameter of �12 lm) of the ori-

gin of implosion were estimated as: pressure �6 TPa, tem-

perature �17 eV, and compression �8.24,25 Here, let us note

that the parameters of the “water” in the vicinity of the axis

or origin of implosion were obtained as the results of one-

dimension hydrodynamic simulations coupled with the equa-

tion of state (EOS) for Cu and water, and the experimentally

measured deposited energy and magnetic pressure. The

results of these simulations agree with the measured SW

time-of-flight and energy delivered to the water flow and

suggest that the cylindrical (spherical) symmetry of the con-

verging SW assumed in the simulations is preserved along

the main part of SW convergence.

In this paper, the results of a numerical investigation of

the dynamics of azimuthally non-uniform converging SW

generated by the underwater explosion of a cylindrical wire

array using two-dimensional hydrodynamic simulations are
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presented. Two different types of azimuthal non-uniformities

that can be developed in these experiments have been stud-

ied. Non-uniformities of the first type (macro non-uniform-

ities) can be developed relatively far from the converging

axis because of slightly different (20%–40%) rates of heating

of the wires, resulting in their non-simultaneous explosion.

Non-uniformities of the second type (micro non-uniform-

ities) were considered in relatively close proximity to the

converging axis (�200 lm). These non-uniformities can be

associated with, for example, micro-inclusions in water or a

small non-uniformity in background temperature at the con-

verging SW front. The results obtained showed that the non-

uniformities of the SW that were initially introduced are

weakly unstable. Macro non-uniformities are more critical

for cumulation of energy since they propagate over a longer

distance toward the converging axis, and thus grow stronger.

However, for the broad range of experimentally relevant

regimes that were considered, non-uniformities remain

small, and thus, do not significantly affect the cumulation of

energy. It was found that only for macro non-uniformities

with a wavelength comparable to the distance from the con-

verging axis does the growth rate become significant and can

considerably attenuate the energy cumulation.

II. MODEL DESCRIPTION

An external view of a typical cylindrical wire array used

in experiments, as described for example in Ref. 22, is

shown in Fig. 1. The wire array is placed between the cath-

ode and anode electrodes inside an experimental chamber

filled with water. A converging cylindrical SW in water is

produced by the electrical explosion of wires generated by a

short (�10�6 s) high current (�300 kA) pulse (stored energy

� 4 kJ).

The exploding wires and water flow expansion were

modeled using mass, momentum, and energy conservation

equations for each substance, which can be written in the

Lagrangian coordinates in integral form as

d

dt

ð
VðtÞ

qdV ¼ 0; (1)

d

dt

ð
VðtÞ
~uqdV �

ð
SðtÞ
ðPþ QÞ~ndA ¼ 0; (2)

de
dt
� ðPþ QÞ d

dt

1

q

� �
¼ 0; (3)

where V(t) is the control volume and S(t) is its boundary, ~n
denotes the outward normal unit vector to this boundary, and

q, P, and e are the density, pressure, and internal specific

energy density of water, respectively. In a two-dimensional

model, the volume integral is replaced by the area integral

over the cross-section of the control volume and the surface

integral is replaced by the contour integral over the boundary

of this cross-section. Artificial viscosity Q was added to the

pressure for smoothing the SW front over several numerical

cells. For two spatial dimensions, the generalized form of

artificial viscosity, developed at Lawrence Livermore

Laboratory,26 was used. Conservation law equations were

solved self-consistently together with the EOS database:27

P ¼ Pðq; eÞ for each substance. To find numerical solution,

Eqs. (1)–(3) were discretized using a cell-centered finite vol-

ume method on an unstructured triangular mesh.28–30 This

method was selected because it combines the geometric flex-

ibility of a finite-element method with the simplicity of a

finite-difference method. To reduce computational time, the

calculation domain was limited to one quarter of a full circle,

which implies the p=2 symmetry assumption. The computa-

tional domain that includes water and wires is subdivided

into a set of non-overlapping unstructured triangular cells

(triangular mesh) in such a way that the wire-water interface

lies along corresponding cell boundaries [Fig. 2(a)]. Since in

the Lagrangian frame there is no flow through the boundaries

of fluid cells, they remain composed of one substance (either

water or metal) during the motion, which significantly sim-

plifies the calculation procedure. The triangular mesh was

constructed using the Delaunay triangulation algorithm31

that maximizes the minimum angle of all triangles, and

therefore, minimizes their circumcircles (relative to area)

and the cumulative error of discretization. Pressure Pc, den-

sity qc, and internal energy ec are the cell-centered values,

while the trajectories ~rn, velocities ~un, and accelerations ~an

are determined at the nodes of the mesh. Each triangle is sub-

divided into quadrilaterals formed by connecting their

FIG. 1. External view of a cylindrical wire array consisting of 40 Cu wires,

each 40 mm in length and 100 lm in diameter.

FIG. 2. Discrete staggering (a) Delaunay triangulation. Blue is water.

Yellow is metal. (b) Pressure forces acting on polygon surrounding the

node. li is the length of the “ith” polygon side, ~ni is the inward normal unit

vector to this side, c is centroid of cth cell.
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centroids with the midpoints of the opposite sides [Fig. 2(b)].

The acceleration of each node is found from momentum con-

servation (Eq. (2)) as the net pressure force acting on the

surrounding polygon divided by its mass, ~an ¼
P

i Pc~nili=P
c qcðSc=3Þ, where li is the length of the “ith” polygon side,

~ni is the inward normal unit vector to this side, and Sc, qc,

and Pc are the area, density, and pressure of the “cth” cell,

respectively. Such spatial discretization can be considered as

the generalization of the central difference scheme for trian-

gular mesh. An explicit numerical scheme with standard

time-centered staggering was used: the velocities were deter-

mined at half-integer time steps, while all other values were

evaluated at integer time steps. At the first time step, the

acceleration ~aj
n at t ¼ tj is found from known pressure and

density values using the momentum conservation equation.

Once the acceleration is known, one can calculate the veloc-

ity at t ¼ tjþ1=2: ~ujþ1=2
n and position at t ¼ tjþ1: ~rjþ1

n . Now,

using the position of each node, the area of each cell and,

respectively, the new cell-averaged density qjþ1
c can be

found from the mass conservation equation (Eq. (1)). In lin-

ear approximation, cell-averaged values are equal to the cell-

centered values (values at the centroids of triangles). Finally,

new specific energy ejþ1
c and pressure Pjþ1

c values are

obtained by the iterative solution of the energy conservation

equation (Eq. (3)) coupled to EOS. Since such a scheme is

explicit, the following Courant-like time step constraint

must be used to ensure the stability of the scheme: Dt
� k min

C
ðHmin

C =cSound
C Þ, where Hmin

C and cSound
C are the

minimum height and sound speed for the “cth” cell, respec-

tively, and the empirical coefficient k ¼ 1=4. The propagation

of fluids causes significant distortion and tangling of the

Lagrangian mesh, which becomes especially severe as the

wires expand. The latter results in the loss of accuracy or even

complete destruction of the numerical solution. This problem

is overcome by a rezoning procedure32,33 during which a new

grid is defined and the Lagrange solution is mapped to the new

grid. The values at the nodes of the new grid (accelerations

and velocities) are evaluated by linear interpolation between

neighboring nodes of the old grid. The cell-averaged density

(specific energy) is found as the total mass (total internal

energy) of the new triangle divided by its area (total mass):

qcN
¼
P

cO
qcO

ScOcN
=
P

cO
ScOcN

, ecN
¼
P

cO
ecO

qcO
ScOcN

=
P

cO
qcO

ScOcN
, where ScOcN

is the area of overlap between the new tri-

angle cN and old triangle co. The value of pressure is

obtained from the density and specific energy using the EOS.

The rezoning procedure is applied when a minimum thresh-

old value of triangles quality q¼Sc=ðh2
1þh2

2þh2
3Þ is

achieved, where Sc is the triangle area and hi are its side

lengths. To improve the resolution of the flow features in

the proximity of the converging axis without an excessive

increase in computational time, an adaptive mesh refinement

procedure was applied. Namely, when the front of the SW

reaches some radius, each triangle within this radius is

divided into four triangles of the same shape. This refine-

ment procedure is invoked several times, and thus, the reso-

lution of the SW is gradually increased as it moves toward

to the converging axis. As in the case of the rezoning, the

change in the grid must be followed by mapping the

Lagrange solution to the new grid, which is accomplished

using the procedure described above. In fact, such a mapping

procedure is not conservative, which could lead to a signifi-

cant error in calculations. The error of such a procedure is of

second order of cell size, since it utilizes linear interpolation.

This error could be significant at the shock wave front where

cells become strongly deformed, especially when the shock

wave front approaches the converging axis. In the simula-

tions, however, the rezoning procedure was employed at the

earlier stage of the SW generation, when the wires are

exploding, and later for refinement of the non-disturbed

water cells before the converging SW front, when the SW

front approaches a half and quarter of the array radius.

Therefore, this procedure should not significantly affect the

simulation results. The simulation algorithm was developed

on MATLAB 2012b platform and carried out on a PC with

an Intel(R) core(TM) i7-3770 processor and 32 GB RAM.

III. RESULTS OF MODELING

Below, we present the results of numerical simulations

of converging SW generated by the electrical explosion of a

cylindrical wire array with a diameter of 5 mm and length of

40 mm made of 40 copper wires, each being 100 lm in diam-

eter. The explosion of the wires was produced by a high-

current pulse of �300 kA maximal amplitude and rise time

of �400 ns emitted by a pulsed generator with stored energy

of �4 kJ. The dependence of the input power on time (Fig. 3

and Table I) was taken from typical UEWE experiments.22

In the model, skin effect was neglected and homogeneous

wire heating was supposed.34

The results for macro non-uniformities that were initiated

relatively far from the converging axis by unequal power dis-

tribution between different wires are shown in Figs. 4(a) and

4(b). Here, one can see a relative mean standard deviation of

the SW front radius dR= �R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ 2p

0
½RðuÞ � �R�2du

q
= �R with

respect to the mean radius of the SW front �R ¼
Ð 2p

0
RðuÞdu;

where the SW front was determined as the isobar line at

50 bar. The plots in Figs. 4(a) and 4(b) correspond to an ini-

tial 40% and 20% difference in power distribution between

different wires, respectively. Wires with higher (10% or 20%

higher than average power) and lower (10% or 20% lower

than average power) power input alternate periodically. Here,

average power is determined as a power equal to the total

power divided by the number of wires. In the case of total

number of wires of 40, for dipole-shaped non-uniformity

FIG. 3. Power vs. time obtained in underwater electrical explosion of cylin-

drical wire array of 40 Cu wire array.22
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(blue dash curves in Fig. 4) each 10 wires with higher power

input follow by 10 wires with lower power input. In the case

of quadrupole-shaped non-uniformity (red solid curves in

Fig. 4), each 5 higher power wires follow by 5 lower power

wires. For odd-even non-uniformity (black dash-dot curves in

Fig. 4), each higher power wire is alternated by lower power

wire. The total power distributed between all 40 wires, as

shown in Fig. 3, is identical in all these cases. One can see

that only dipole-shaped non-uniformity results in pronounced

(dR= �R � 20% and dR= �R � 10% for a 40% and 20% differ-

ence in power distribution between different wires, respec-

tively) SW non-uniformity in the vicinity of the implosion

axis. The dynamics of the SW non-uniformities can

be qualitatively explained by the geometrical Chester-

Chisnell-Witham (CCW) model.10,12 According to this

model, the dynamics of the SW can be explained qualita-

tively by corrugation and convergence effects. The corruga-

tion effect follows from distribution of the pressure at the

corrugated front of SW (Fig. 5). Namely, regions with higher

curvature experience higher pressure (red arrows) and hence

accelerate more strongly. Regions with higher curvature lag

behind the mean SW radius and thus this effect tends to cause

these regions to catch up with the equilibrium position of the

SW front having a mean radius. Once accelerated, these

regions can pass this equilibrium position and continue to

advance ahead of it, resulting in the oscillations of perturba-

tions around the azimuthally averaged SW front. This effect

is more pronounced for perturbations with short wavelengths,

i.e., the wavelength is much smaller than the distance to the

implosion axis, since these perturbations have stronger varia-

tion in curvature. The convergence effect results from the

acceleration of the SW due to convergence, i.e., regions of

smaller curvature are advanced closer to the axis and, there-

fore, these regions experience higher pressure and accelera-

tion, which tends to increase the non-uniformity further.

A snapshot of the SW for 40% odd-even non-uniformity at
�R ¼ 0:237 cm is shown in Fig. 6(a) on the background of

pressure distribution. In the vicinity of the exploding wires,

one obtains an initially corrugated SW front resulting from

the overlapping of individual SWs generated by each wire. In

agreement with previously reported results,35 the originally

corrugated SW is self-aligned into a cylindrically symmetric

converging front over a very short propagation distance. The

fast self-alignment occurs because at this relatively long

distance from the axis, the corrugation effect of very short

wave-length perturbations greatly exceeds the convergence

effect. This explains the almost zero deviation dR= �R ! 0 in

the rightmost parts in Figs. 4(a) and 4(b). The region of

dR= �R ! 0 is followed by a region where the perturbations

grow. Perturbations having the longest wave-length (dipole-

shaped) exhibit the highest, almost steady growth [blue dash

curves in Figs. 4(a) and 4(b)] because the corrugation effect

for such perturbations is smaller than the convergence

effect. A snapshot of such a dipole-shaped SW for 40%

non-uniformity is shown in Fig. 6(b) at �R ¼ 0:01 cm. For

perturbations of shorter wavelength (quadrupole-shaped), the

corrugation effect becomes comparable to the convergence

effect, resulting in a weaker growth of the deviation [red

solid curves in Figs. 4(a) and 4(b)]. A snapshot of such a

quadrupole-shaped SW for 40% non-uniformity is shown

in Fig. 6(c) at �R ¼ 0:13cm. Similar behavior with a weak

growth and oscillations at the SW front was observed for

macro non-uniformity of shortest wave-length (odd-even)

shown by black dash-dot curves in Figs. 4(a) and 4(b). A

snapshot of the SW front for 40% odd-even non-uniformity

at �R ¼ 0:034 cm is shown in Fig. 6(d).

The influence of the different non-uniformities on

the maximal pressure behind the SW front in the vicinity

(r� 5 lm) of the implosion axis is shown in Fig. 7(a) (40% dif-

ference in power distribution) and Fig. 7(b) (20% difference in

TABLE I. Tabulated data of the power deposited to exploding cylindrical array (see Fig. 3).

Time, ns 50 100 150 200 250 300 350 400 450 500 550 600 650

Power, GW 0 0.72 2.93 4.5 6.72 9.4 12.7 17.7 18.5 10.6 5.51 3.16 1.67

FIG. 4. Dynamics of 40% (a) and 20% (b) macro non-uniformities. Relative

mean standard deviation of the SW front radius dR= �R vs. the mean radius �R
for dipole-shaped (blue dash curves), quadrupole-shaped (red solid curves)

and odd-even (black dashed-dotted curves) non-uniformities.

FIG. 5. Scheme showing the corrugation effect: higher curvature regions

(red arrows) accelerate stronger then lower curvature region (blue arrows);

and convergence effect: regions of smaller curvature are advanced closer to

the axis and, therefore, accelerate stronger.
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power distribution). This pressure corresponds to the pressure

in one of the cells which are adjacent to the axis. In fact, the

value of the pressure should be found from the EOS using in-

ternal energy and density averaged over two cells adjacent to

the axis. The sides of each of these cells are �5 lm and, there-

fore, this value of the pressure corresponds to the pressure aver-

aged over the 5 lm-radius circle around the axis. Nevertheless,

the results of additional simulations showed that such averaged

pressure is only �14% different from the pressure in one of the

cells in the most unstable case of 40% dipole-shaped non-

uniformity. Figs. 7(a) and 7(b) show that the cumulation is sig-

nificantly (approximately two-fold) reduced only in this most

extreme case.

In Figs. 8(a)–8(d), the results of simulations for micro

non-uniformities that were initiated at distances of several

hundreds of microns from the converging axis are shown.

These non-uniformities, which can be associated with, for

example, micro-inclusions in water or a small

non-uniformity in background temperature, were modeled

by artificial energy sources. These sources, being approxi-

mately round in shape with radius Dr ¼ 20lm � rc=n, were

centered at the radius rc ¼ 200lm with angular periodicity

p/n, n¼ 8 [Fig. 8(a)]. The space-time dependence of the

energy realized in each source, which results in azimuthally

periodic high-pressure regions, was modeled as: w ¼
w0d½t� tc; s� exp½�ðr � rcÞ2=Dr2�cos2ðnuÞ, dðt; sÞ ¼ f18t 2
½�s; s�; 08t 62 ½�s; s�g. Here, w0 ¼ 4:5� 107J=ðkg lsÞ is the

maximum rate of the energy density deposition at peak time

tc ¼ 0:88ls and s ¼ 0:008ls is the duration of the energy

realized in the sources. This duration was chosen such that

the additional pressure would significantly affect only the

front of the SW as it passes through rc ¼ 200lm and results

in a �40% increment in the internal energy density of water

[Fig. 8(b)]. The results of these simulations are shown in

Fig. 8(c), where we present the relative mean standard devia-

tions dR= �R of the SW vs. �R for the cases with micro

non-uniformities (red solid curve) and without any non-

uniformities, other than those caused by overlapping of indi-

vidual SWs from each wire (blue dash curve). It can be seen

that the SW front significantly (dR= �R � 12%) corrugated

by micro non-uniformities [shown by the white isobar line

at 50 bar in Fig. 8(a)] is self-aligned into a cylindrically

symmetric converging front over a very short propagation

distance (�60 lm) because the perturbation wave-length is

much shorter than the distance to the converging axis, and

therefore, the corrugation effect greatly exceeds the conver-

gence effect. Fig. 8(d) shows the maximal achievable pres-

sure in the vicinity (r� 5 lm) of the implosion axis vs. time

for the cases with (red solid curve) and without (blue dash

curve) non-uniformities. One can see that the considered

micro non-uniformities almost do not affect the energy

cumulation; the peak energy density is slightly higher (�7%)

in the case of micro non-uniformities due to the additional

power input by the artificial energy sources. Finally, to verify

our numerical results, we ran simulations for the coarser

mesh (twice longer mesh edges) and compared the temporal

dependences of the pressure at the converging axis for the

FIG. 6. SW front (isobar at P¼ 50 bar) on background of pressure. (a)

Initially corrugated SW formed by overlapping of individual SWs generated

by each wire; (b) dipole-shaped SW; (c) quadrupole-shaped SW; (d) SW

corrugated by odd-even non-uniformity.

FIG. 7. Pressure distributions in the vicinity of implosion axis (r� 5 lm) vs.

time for 40% (a) and 20% (b) macro non-uniformities in the case of dipole-

shaped (blue dashed curves), quadrupole-shaped (red solid curves) and odd-

even (black dashed-dotted curves) non-uniformities.

FIG. 8. Effect of micro non-uniformities modeled by artificial energy sour-

ces introduced at rc ¼ 200lm; (a) initially corrugated SW front (isobar at

P¼ 50 bar) on background of pressure; high-pressure spots correspond to ar-

tificial energy sources; (b) snapshots of internal energy profiles on y¼ 0 axis

with (red solid curve) and without (blue dashed curve) artificial energy sour-

ces; (c) relative mean standard deviation of the SW front radius dR= �R vs.

the mean radius �R; (d) pressure in the vicinity of implosion axis (r� 5 lm)

vs. time with (red solid curve) and without (blue dashed curve) artificial

energy sources.
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case of quadrupole-shaped 40% macro non-uniformities.

The results of the comparison are presented in Fig. 9. One

can see that maximum pressure is smaller for the coarser

mesh since in finite volume methods the pressure is averaged

over the cell and, accordingly, the bigger cell size results in a

smaller pressure, which decays fast versus the distance from

the axis. However, the times of implosion are only 0.3%

(3 ns) different. This implies that the dependence of the SW

velocity on the cell size is insignificant.

IV. SUMMARY

In conclusion, using two-dimensional hydrodynamic

simulations, we investigated the dynamics and stability of

azimuthally non-uniform converging SW generated by the

underwater electrical explosion of a cylindrical wire array

and the effect of these instabilities on the cumulation of

energy in the vicinity of the converging axis. The results

were qualitatively explained using the simple geometrical

Chester-Chisnell-Witham model. These results show that

azimuthal non-uniformities are always weakly unstable; yet,

for a broad range of experimentally relevant regimes they

remain small and do not significantly affect the cumulation

of energy. However, the growth rate of non-uniformities

increases with their wave-length and, when the wavelength

of non-uniformities becomes comparable to the distance

from the converging axis (as for example in the case of

dipole-shaped front of SW), they exhibit substantial growth,

which considerably attenuates the energy cumulation in the

vicinity of converging axis.
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