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Self-Injection-Locked Magnetron as an Active Ring
Resonator Side Coupled to a Waveguide

With a Delayed Feedback Loop
Y. P. Bliokh, Y. E. Krasik, and J. Felsteiner

Abstract—Theoretical analysis and numerical simulations of
the magnetron operation with a feedback loop were performed
assuming that the delay of the electromagnetic wave propagating
in the loop is constant whereas the phase of the complex feedback
reflection coefficient is varied. Results of simulations showed that,
by a proper adjustment of the values of the time delay and
phase of the reflection coefficient that determines phase matching
between the waves in the resonator and feedback loop, one can
increase the magnetron output power significantly without any
other additional measures.

Index Terms—Feedback circuits, magnetrons.

I. INTRODUCTION

MAGNETRON oscillators are widely used sources of
microwave radiation operating over a wide range of

powers and frequencies and having various applications [1]. A
typical feature of the magnetron operation is a relatively broad
and noisy spectrum [2]. However, for many applications (radar,
communication systems, charged-particle accelerators, etc.), it
is very necessary both to narrow the frequency spectrum and to
reduce the noise. Improvements in the microwave spectrum can
be achieved either by using a special magnetron design, which
makes starting conditions more preferable for the operating
mode, or by feeding external monochromatic electromagnetic
radiation into the magnetron cavity. In the latter case, this
controlling radiation stabilizes the magnetron operation sim-
ilarly to other nonlinear oscillators [3]. In fact, the injected
electromagnetic radiation can be produced either by an external
source (injection-locked magnetron (ILM) [4]–[7]) or by the
same magnetron (self-inject-locked magnetron (SILM) [8]). In
the latter case, a part of the magnetron output power is injected
back into the magnetron cavity via a feedback loop. It is worth
noting that this feedback loop can appear as a result of the
magnetron radiation reflection from the load. It has been shown
[4]–[8] that ILMs and SILMs are able to fix the operating
frequency and phase and essentially decrease the noise of the
radiation.
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Fig. 1. Magnetron (ring resonator) and waveguide. (a) Clockwise |+〉 and
(light-gray bold arrow) and anti-clockwise |−〉 (dark-gray bold arrow) propa-
gating eigenmodes. Direct (dashed line) and reflected (solid line) waves in the
waveguide. (b) Ring resonator side-coupled to a waveguide with a feedback
loop.

Recent investigations [9], [10] show that the efficiency of
the relativistic S-band π-mode-operated magnetron can be sig-
nificantly (up to 40%) increased when part of the radiated
electromagnetic power is reflected into the magnetron cavity.
This effect, to our knowledge, has not yet been discussed.
In this paper, we suggest an explanation for this effect using
a model of the magnetron which considers it as an active
nonlinear ring resonator. This model can be applied also to
coupled ring resonator–fiber systems which are of interest for
optoelectronics and communication (see, e.g., [11] and [12]).

II. GEOMETRY OF THE PROBLEM

In the model, a magnetron is considered as a ring resonator
(see Fig. 1). The electromagnetic field of the magnetron op-
erating mode (π-mode) can be considered as a standing wave
presented as a sum of two, clockwise |+〉 and anticlockwise
|−〉, propagating waves having equal frequencies ω and equal
amplitudes A|+〉 = A|−〉. In spite of the fact that only one wave
(wave |+〉, for definiteness) is excited due to the resonant
interaction with the rotating electron flow when the electron
azimuthal drift velocity is close to the wave phase velocity, the
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Fig. 2. Auxiliary problem. Phase matched coupling between waveguide and
waveguide modes. Notation is the same as in Fig. 1.

π-mode keeps its structure, i.e., the parity of amplitudes A|+〉
and A|−〉. Thus, one can consider one wave (|+〉, for instance)
only, keeping in mind that the second, |−〉 wave, has the same
amplitude. The energy stored in the resonator leaks partially
into the waveguide [see Fig. 1(a)].

The output end of the waveguide is connected to a cer-
tain payload, for instance, an antenna. It is assumed that the
matching between the waveguide and the load is not ideal, i.e.,
part of the wave energy is reflected and enters back into the
magnetron cavity. This reflected wave excites two contrapropa-
gating waves, |+〉 and |−〉, in the magnetron cavity. Due to the
aforementioned relation between the amplitudes of these waves,
one can consider the active |+〉 wave only which is amplified
by the electron flow. By convention, the paths of rightward and
leftward propagating waveguide modes (| →〉 and | ←〉modes)
can be considered as separated paths. Namely, the wave which
is reflected from the waveguide output end comes back to the
resonator along a feedback loop [see Fig. 1(b)]. The separation
of the | →〉 and | ←〉mode paths means that the reflection of the
| ←〉 mode from the waveguide–resonator coupling element is
absent by definition. Thus, we finally arrive at the model of the
ring resonator side coupled to the waveguide, and the coupling
between the resonator and waveguide modes is a phase matched
coupling. This means that only the copropagating waves are
coupled: Modes | →〉 and |+〉 (modes | ←〉 and |−〉) are
coupled, whereas modes | →〉 and |−〉 (modes | ←〉 and |+〉)
are not coupled. The phase matched coupling guarantees the
absence of the | ←〉 mode reflection mentioned earlier. This
configuration, i.e., side-coupled waveguide and ring (or disk)
resonator, has widely been explored in photonics (see, e.g., [11]
and [12]). The general properties of this system were reported
in [13], and the results of this work will be used in the next
section.

III. SMALL SIGNAL MODEL

Let us consider a supplementary problem, namely, wave
propagation in the waveguide coupled with a ring resonator (see
Fig. 2). Let ψin,ω be the Fourier transform of the rightward
propagating waveguide mode ψin(t) on the left side with
respect to the waveguide–resonator coupling cross section. The
Fourier transform ψout,ω of the transmitted wave ψout(t) on
the right side with respect to this cross section and ψin,ω are
related as

ψout,ω = t(ω)ψin,ω (1)

where the transmission coefficient t(ω) is defined as [13]

t(ω) = 1− i 1
ω − ωr + iΓ

L

vg
|Vr,w|2. (2)

Here, ωr is the eigenfrequency of the ring resonator, Γ =
Γd + Γc, the coefficient Γd is related to the resonator dissi-
pative losses, the coefficient Γc = |Vr,w|2L/2vg is related to
the energy leakage from the resonator because of coupling with
a waveguide characterized by the coupling coefficient Vr,w, L
is the resonator perimeter, and vg is the group velocity of the
resonator eigenmode. Equation (2) is valid when the coupling
is weak

Γc/ωr � 1. (3)

Parameters Γ, Γd, and Γc can be written in terms of the res-
onator Q-factors: Γ = ωr/2Qtot, Γd = ωr/2Qdiss, and Γc =
ωr/2Qleak. Here, Qtot is the total Q-factor, and Qdiss and
Qleak are the Q-factors responsible for the energy dissipa-
tion and leakage, respectively. A negative dissipative Q-factor,
Qdiss < 0, corresponds to an active resonator, which amplifies
an incoming wave.

The output wave is a superposition of two waves, namely,
the wave which crosses the coupling region directly through
the waveguide and the wave that enters the waveguide from the
resonator. The two terms in the right side of (2) describe these
two paths of the wave transmission. The first term, unity, de-
scribes the wave’s direct transmission through the waveguide1;
the second term describes the wave’s transmission through the
resonator. Thus, ψout,ω is the sum of two terms

ψout,ω = t(ω)ψin,ω = ψdirect,ω + ψres,ω (4)

where ψdirect,ω � ψin,ω is the Fourier transform of the wave
transmitted directly through the waveguide and ψres,ω is
the Fourier transform of the wave transmitted through the
resonator:

ψres,ω = [t(ω)− 1]ψin,ω

= − iQ−1
leak

ω/ωr − 1 + i
(
Q−1

diss +Q−1
leak

)
/2
ψin,ω. (5)

Presenting (5) in the form
[−iω+iωr+ωr

(
Q−1

diss+Q−1
leak

)
/2

]
ψres,ω =−ωrQ

−1
leakψin,ω

one can see that this is the Fourier transformation of the
differential equation

dψres(t)
dt

+ iωrψres(t) +
ωr

2

(
1

Qleak
+

1
Qdiss

)
ψres(t)

= − ωr

Qleak
ψin(t). (6)

1The fraction ∼ Q−1
leak

of the incoming wave energy passes through the
resonator, and therefore, the corresponding transmission coefficient tw is not
equal to unity. This fraction is small by virtue of condition (3) and can be
neglected because both terms in (2) are of the same order of magnitude, of
the order of unity.
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Thus, one can write the following equation for input and
output waves having arbitrary shapes:

ψout(t) = ψin(t) + ψres(t) (7)

where ψres(t) is the solution of (6). Here, let us remind that
the wave ψres(t) is the wave that leaks from the resonator
into the waveguide. The wave field in the resonator can be
significantly larger than the wave field ψres(t) in the waveguide
[weak coupling between the resonator and waveguide, see (3)].
However, these wave fields are linearly proportional to each
other, and the field ψres(t) can be considered as a normalized
field in the resonator.

A supplementary problem that is being considered helps one
to describe the system with the presence of a feedback loop
[see Fig. 1(b)]. In a general case, the wave propagation along
the feedback loop is described by a functional equation

ψin(t) = F̂ {ψout(t)} (8)

where F̂ is a certain functional. In the simplest case of a
nondispersive feedback loop, this relation has the form

ψin(t) = qψout(t− T ) (9)

where T is the time of the wave propagation along the loop
(delay time) and q is the complex feedback coefficient, |q| < 1.
Hereinafter, we will consider this simple model only.

Equations (6), (7), and (9) [(8) in the general case] being
supplemented by initial conditions are a closed system that
describes the small signal theory of a magnetron with a delayed
feedback. Asymptotic solutions of these equations are rather
simple. There is an exponentially either growing or decaying
output wave amplitude, depending on whether the system’s
self-excitation threshold is exceeded or not. In order to describe
the wave amplitude saturation, nonlinear terms should be incor-
porated in these equations.

IV. NONLINEAR MODEL

Without the feedback loop, i.e., when q = 0(ψin = 0), (6)
describes a linear resonator with the self-excitation threshold
defined as

Qdiss +Qleak = 0. (10)

When Q−1
diss +Q−1

leak < 0, the field amplitude ψres(t) grows
exponentially. The increase in the amplitude can be limited
by the replacement of the linear dissipation term Q−1

diss <

0 in (6) by the nonlinear one: Q−1
diss → Q̃−1

diss = Q−1
diss(1−

|ψres(t)|2/γ2
d), where γd is the parameter that is related to the

saturation amplitude. With nonlinear Q−1
diss, (6) takes the form

dψres(t)
dt

+iωrψres(t)

+
ωr

2

[
1

Qleak
+

1
Qdiss

(
1−|ψres(t)|2 /γ2

d

)]
ψres(t)=0. (11)

This is the Van der Pol equation which is widely used
as a model of a nonlinear auto-oscillating dynamical system

[14]. Another effect which, in general, should be taken into
account is a nonlinear shift of the resonator eigenfrequency.
This effect can be incorporated for in the model by the re-
placement in (6) ωr → ωr(1− |ψres(t)|2/γf ), where γf is the
parameter that is related to the frequency shift. The latter results
in describing the Duffing oscillator. Both Van der Pol and
Duffing models are typical examples of nonlinear 2-D oscil-
lating systems [14]. Duffing’s model describes nonisochronal
oscillations, and Van der Pol’s model describes a limit cycle
when the equilibrium point loses its stability. It is reasonable to
suppose that, due to their generality, these models can be used
to describe the properties of the system under consideration. To
summarize, let us present hereinafter the equations which will
be analyzed

dψres(t)
dt

+ iωr

(
1− |ψres(t)|2 /γf

)
ψres(t)

+
ωr

2

[
1

Qleak
+

1
Qdiss

(
1− |ψres(t)|2 /γ2

d

)]
ψres(t)

= − ωr

Qleak
ψin(t), (12)

ψin(t) = qψout(t− T ), (13)

ψout(t) =ψin(t) + ψres(t). (14)

V. ANALYSIS

One can rewrite (12)–(14) in the dimensionless form us-
ing dimensionless time τ = ωrt and normalized amplitudes
Ai(τ) = ψi(τ)eiτγ−1

d

√
Qleak/(Qleak − |Qdiss|)

dAres(τ)
dτ

− iκ|Qdiss|γ
2
d

γf
|Ares(τ)|2Ares(τ)−

1
2
κ

[
1− |Ares(τ)|2

]
Ares(τ) = − 1

Qleak
Ain(τ) (15)

Ain(τ) = qe−iθAout(τ − θ), (16)

Aout(τ) =Ain(τ) +Ares(τ), (17)

Here, θ = ωrT is the dimensionless delay time and κ =
(Qleak − |Qdiss|)/Qleak|Qdiss|. In (15), it was taken into ac-
count that Qdiss < 0.

Equations (15)–(17) have monochromatic solutions with
constant amplitudes. Setting Ai(τ) = Bie

−iντ , where ν =
(ω − ωr)/ωr is the normalized frequency shift, we arrive at the
following set of algebraic equations:

−iνBres − iκ|Qdiss|γ
2
d

γf
|Bres|2Bres − 1

2
κ

(
1− |Bres|2

)
Bres

= − 1
Qleak

Bin, (18)

Bin = qe−iθ+iνθBout, (19)

Bout =Bin +Bres. (20)
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Excluding Bin, one can obtain

i

(
ν + κ|Qdiss|γ

2
d

γf
|Bres|2

)
+

1
2
κ

(
1− |Bres|2

)

=
1

Qleak

qe−iθ+iνθ

1− qe−iθ+iνθ
. (21)

Equation (21) determines both frequency shift ν and nor-
malized power in the resonator P = |Bres|2 (P = 1 without
the feedback, q = 0). In the simple case when the nonlinear
dispersion is absent (γf →∞), one can rewrite the complex
equation (21) as

ν = − |q|
Qleak

sin(θ − νθ − α)
1 + |q|2 − 2|q| cos(θ − νθ − α)

, (22)

P = |Bres|2

= 1− 2|q|
κQleak

cos(θ − νθ − α)− |q|
1 + |q|2 − 2|q| cos(θ − νθ − α)

, (23)

where α = arg q is the phase of the feedback coefficient.
As it follows from (23), the normalized power can be varied

in the range

1− 2|q|
1− |q|

1
κQleak

≤ P ≤ 1 +
2|q|

1 + |q|
1

κQleak
. (24)

When the left boundary in (24) is negative, the minimal
possible power is equal to zero.

Near the self-excitation threshold, the parameter κQleak =
(Qleak − |Qdiss|)/|Qdiss| is small. In the latter case, the feed-
back can noticeably increase the power P in the resonator. The
inequalities (24) determine potentially possible boundaries of
the power variation. Upper and lower boundaries correspond
to such values of the frequency shift ν for which cos(θ −
νθ − α) = ∓1, respectively. However, at designated values θ
and α, the frequency ν is determined by the solution of the
dispersion equation (22). The proximity of the power value to
the upper possible value depends on whether the solutions of
the dispersion equation contain eigenfrequencies ν for which
cos(θ − νθ − α) is rather close to −1.

It is convenient to present the dispersion equation (24) as

ϕ = θ − α+
θ|q|
Qleak

sinϕ
(1 + |q|2 − 2|q| cosϕ)

(25)

where ϕ = θ − α− θν. If the feedback coefficient is small,
|q|2 � 1, and

θ < Qleak/|q|, (26)

equation (25) has one solution ϕ(α) (assuming delay time θ =
const). The inequality (26) will be considered as a short delay
time condition. In the case of a reflection coefficient phase α
variation, the value cos[ϕ(α)] varies in a full range from −1 to
+1. Accordingly, the power P varies in a full range defined by
(23). In the opposite case of a long delay time, when

θ 
 Qleak/|q|, (27)

the dispersion equation (25) has many roots, and the eigenfre-
quency ν for which cos[θ − ν(α)θ − α] is close to−1 is always

Fig. 3. Dependence of the normalized power on time. “Short” delay time
θ < Qleak/|q|. Dashed line corresponds to q = 0. The curves are marked by
corresponding α/π values. |Qdiss| = 15, Qleak = 20, q = 0.2, and θ = 70.

Fig. 4. Same as in Fig. 3. “Long” feedback loop, θ � Qleak/|q|. |Qdiss| =
15, Qleak = 20, q = 0.2, and θ = 200.

present. This means that (22) and (23) always have solution
for which the power P value is close to its upper limit defined
by (24).

The analysis presented earlier shows that a variation in the
reflection coefficient phase can produce a rather strong power
variation if the inequality (26) is satisfied. In the opposite case,
when the inequality (27) is satisfied, the power is close to its
maximal possible value, which can noticeably exceed the power
in the resonator without a feedback loop.

VI. NUMERICAL SIMULATIONS

Examples of numerical solutions of (15)–(17) are presented
in Figs. 3 and 4.

Fig. 3 demonstrates how the power saturation level depends
on the phase α when the inequality (26) is satisfied. Param-
eters used for numerical simulation were chosen close to their
estimations for the experimental setup described in [9] and [10]:



82 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 40, NO. 1, JANUARY 2012

|Qdiss| = 15, Qleak = 20, q = 0.2, and θ = 70. The results of
simulations showed that the microwave generation in the mag-
netron can be either totally suppressed (α = 0) or enhanced
by ∼40% (α � π) as compared with the magnetron operation
without feedback (q = 0).

Fig. 4 is related to the “long” feedback loop when the
inequality (27) is satisfied. In agreement with the analysis pre-
sented earlier, the power saturation level is almost independent
of the phase α and is close to its maximal value for the system
with a “short” feedback loop (short delay time).

VII. DISCUSSION

The theoretical analysis and numerical simulations of the
magnetron operation with a feedback loop were performed as-
suming that the time θ of the wave propagating in the feedback
loop is constant whereas the phase α of the reflection coefficient
q is varied. These assumptions were used only to simplify the
solution. In general, the solution of the dispersion equation (25)
depends on both phaseα and delay time θ. Variation in the value
of θ affects the solution in the same manner as the phase α
variation. This similarity becomes important particularly when
θ 
 π and the condition (26) is satisfied. Thus, the length of
the waveguide that connects the magnetron with a payload (an
antenna, for instance) can affect the magnetron characteristics
essentially. Results of simulations showed that, by a proper
adjustment of the values of θ and α that determines phase
matching between the waves in the resonator and feedback
loop, one can increase the magnetron’s output power signifi-
cantly without any other additional measures.
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